
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 276 (2004) 81–103

A comparison of shortening of the projection to axial elasticity

V. Radisavljevic, H. Baruh*

Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road,

Piscataway, NJ 08854-8058, USA

Received 31 July 2001; accepted 20 July 2003

Abstract

In this paper we consider the combined bending and axial vibration of beams and we analyze the
magnitudes of the different effects that contribute to the motion. Specifically, we consider the transverse
elasticity, the axial elasticity, and the shortening of the projection. The goal of our study is to ascertain the
circumstances under which the axial elasticity is larger than the shortening of the projection and vice versa.
We show that for the majority of cases the shortening of the projection has larger amplitude than the axial
stretch. We also develop a general closed-form solution for the response when a force is applied at a free
end.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

An important issue when modelling beams and beam-like structures is to whether include the
axial deformation in the mathematical model. For a beam, such deformation is due to two
primary sources: (1) The axial elasticity, and (2) the shortening of the projection due to curvature
of the elastic axis. In general, the presence of axial forces dictates whether such effects need to be
considered. For example, if there is a persistent axial force, such as a compressive force as in the
case of a column, or a continuous tensile force, as in the case of a rotating beam, the shortening of
the projection must be included in the mathematical model [1].

In the absence of a persistent external force in the axial direction, conventional wisdom has
dictated to include the axial elasticity in the mathematical model, before including the shortening
of the projection. Part of the reason for this is the non-linearity of the expression describing the
shortening of the projection. Also, when viewed from the definition of axial strain, the
contribution of axial elasticity is a first order term, while the shortening of the projection is a
second order term.
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In this paper, we study the magnitude of the shortening of the projection and the axial stretch
for the vibration of beams. We show that the axial elasticity and the shortening of the projection
in most cases have comparable magnitudes and we develop a ratio of the maximum values of these
quantities. We demonstrate that in the majority of cases the shortening of the projection has a
more significant contribution. The analysis lead to guidelines that one can follow when selecting
the mathematical model of a slender beam.

2. Kinematic equation

We consider a slender beam, that is, whose length is considerably larger than its cross-sectional
dimensions, such as the beam in Fig. 1.

We consider small deformations and assume that shear deformation can be ignored. We further
ignore the coupling between bending and torsion. It then becomes possible to only consider the
stress in the x direction. We will model the combined bending and axial motion. Fig. 2 shows the
deformed beam axis, where point A on the beam axis has moved to A* :

In this configuration, s denotes the distance traversed along the beam axis from x ¼ 0 to the
deformed position A* ; with u; v and w denoting the components of the deformation along the x; y

and z axes. The deformation of a point x on the beam axis is described by

rðx; tÞ ¼ ðx þ uðx; tÞÞiþ vðx; tÞjþ wðx; tÞk ð1Þ

and we also assume that the section rotations of the beam in the y and z directions are
approximated by

yyðx; tÞ ¼ �
@wðx; yÞ

@x
¼ �w0ðx; tÞ; yzðx; tÞ ¼

@vðx; yÞ
@x

¼ v0ðx; tÞ; ð2Þ

where yy and yz are the components of the second rotation. Hence, the slope of the beam, denoted
by yðx; tÞ; can be expressed as

yðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02ðx; tÞ þ w02ðx; tÞ

q
: ð3Þ

The distance traversed along the beam axis sðx; tÞ is

sðx; tÞ ¼ x þ eðx; tÞ; ð4Þ
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in which eðx; tÞ is the elastic stretch, due to the axial elasticity. We next consider the projection of
the deformed point A* onto the beam axis. The configuration is shown in Figs. 3 and 4, the latter
showing a differential element.

We denote the length of the projection by xðx; tÞ so that xðx; tÞ ¼ x þ uðx; tÞ: Using a Taylor
series expansion of Eq. (3), the projection of the differential element ds onto the x-axis can be
expressed as

dxðx; tÞEds 1� 1
2
y2ðx; tÞ

� �
¼ ds � 1

2
ðv02ðx; tÞ þ w02ðx; tÞÞ ð5Þ
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which when integrated gives

xðx; tÞ ¼ x þ uðx; tÞEsðx; tÞ �
1

2

Z sðx;tÞ

0

@v

@s

� �2

þ
@w

@s

� �2
" #

ds: ð6Þ

Considering that e and u are small compared to s and x; we approximate the upper limit in the
above equation by x; which yields

uðx; tÞ ¼ eðx; tÞ �
1

2

Z x

0

@v

@s

� �2

þ
@w

@s

� �2
" #

ds: ð7Þ

This relation can also be obtained by considering the non-linear strain–displacement
relationships. Indeed, writing

exx ¼
@u

@x
þ

1

2

@u

@x

� �2

þ
@v

@x

� �2

þ
@w

@x

� �2
" #

þ h:o:t: ð8Þ

and ignoring the ð@u=@xÞ2 term and integrating, we obtain Eq. (7). Also, the above equation can
be written as

exxðx; tÞ ¼ e0ðx; tÞ: ð9Þ

Let us go back to Eq. (7). We observe that the deformation in the x direction, uðx; tÞ; has two
components. The first, eðx; tÞ; is due to the axial elasticity, and the second, denoted by Sðx; tÞ and
equal to �1

2

R x

0 ½ð@v=@sÞ2 þ ð@w=@sÞ2� ds; is due to the shortening of the projection. The word
shortening is associated with the observation that this term is always negative.

The issue we investigate next is the magnitude of these two contributions along the x-axis.
Traditionally, one assumes that the stretch has a larger value because it is a first order term and
the shortening is of second order. To analyze this issue in more detail, we will derive the equations
of motion and obtain the response.

3. Equations of motion

We will obtain the equations of motion using Hamilton’s equations. One can use two sets of
variables to derive the equations of motion: e; v; w or u; v; w: It turns out that it is more convenient
to write the kinetic energy in terms of u; v; w and the potential energy in terms of e; v; w: A
comprehensive survey of different approaches to model the shortening of the projection and its
application to rotating beams can be found in Ref. [2]. We write the energy terms as

2TðtÞ ¼
Z L

0

mðxÞð’rðx; tÞ 	 ’rðx; tÞÞ dx ¼
Z L

0

mðxÞð ’u2ðx; tÞ þ ’v2ðx; tÞ þ ’w2ðx; tÞÞ dx; ð10Þ

2V ðtÞ ¼
Z L

0

ðEAðxÞ½e0ðx; tÞ�2 þ EIzzðxÞ½v00ðx; tÞ�2 þ EIyyðxÞ½w00ðx; tÞ�2Þ dx; ð11Þ

in which mðxÞ is the mass unit per unit length, mðxÞ ¼ rAðxÞ with AðxÞ denoting the cross-section
area and r is the density.

ARTICLE IN PRESS

V. Radisavljevic, H. Baruh / Journal of Sound and Vibration 276 (2004) 81–10384



Let us begin with u; v; w: We write the virtual work as

dW ¼
Z

ðpxðx; tÞdu þ pyðx; tÞdv þ pzðx; tÞdwÞ dx; ð12Þ

where px; py; pz are the components of the force along the xyz axes. We invoke Hamilton’s
Principle and carry out the details of the integration by parts. Introducing the quantity Pðx; tÞ;
defined as

Pðx; tÞ ¼ EAðxÞe0ðx; tÞ ¼ EAðxÞu0ðx; tÞ þ 1
2

EAðxÞ
@v

@x

� �2

þ
@w

@x

� �2
" #

; ð13Þ

in which Pðx; tÞ describes the internal force about the elastic axis; we obtain the equations of
motion as

mðxÞ .uðx; tÞ �
@

@x
Pðx; tÞ ¼ pxðx; tÞ; ð14Þ

mðxÞ.vðx; tÞ þ
@2

@x2
EIzðxÞ

@2vðx; tÞ
@x2

� �
�

@

@x
Pðx; tÞ

@vðx; tÞ
@x

� �
¼ pyðx; tÞ; ð15Þ

mðxÞ .wðx; tÞ þ
@2

@x2
EIyðxÞ

@2wðx; tÞ
@x2

� �
�

@

@x
Pðx; tÞ

@wðx; tÞ
@x

� �
¼ pzðx; tÞ: ð16Þ

These equations are non-linear due to the coupling between the axial and transverse motions.
Let us next consider the motion description in terms of e; v; w: Here, we retain the same form of

the potential energy, but rewrite the velocity of the differential element at x as

’rðx; tÞ ¼ ’eðx; tÞi0 þ ’vðx; tÞjþ ’wðx; tÞk ð17Þ

in which i0ðx; tÞ is the unit vector along the deformed elastic axis. In essence, we are writing the
velocity in terms of a set of normal–tangential co-ordinates. The vector i0 denotes the tangential
direction with v and w denoting the location of point x: It follows that the kinetic energy has the
form

2TðtÞ ¼
Z L

0

mð’e2 þ ’v2 þ ’w2 þ 2’eð’v sin yz � ’w sin yyÞÞ dx: ð18Þ

Application of Hamilton’s principle leads to a set of non-linear equations of motion. Our goal
here is to compare the magnitudes of the elastic deformation eðx; tÞ and shortening of the
projection Sðx; tÞ in closed form. To this end, we consider the expression for the kinetic energy in
the above equation and neglect all terms that are higher order than quadratic, namely those that
involve sin y: We justify this assumption by noting that yy and yz are small quantities. As a result,
the kinetic energy reduces to

2TðtÞE
Z L

0

mð’e2ðx; tÞ þ ’v2ðx; tÞ þ ’w2ðx; tÞÞ dx: ð19Þ

This approximation can also be obtained from Eqs. (7) and (10) if we consider that the time rate
of change of the shortening of the projection is small, so that it can be neglected.
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We write the virtual work in terms of the components of the external forces along the x0; y; z

axes in the form

dW ¼
Z

ðpx0 ðx; tÞde þ pyðx; tÞdv þ pzðx; tÞdwÞ dx ð20Þ

in which px0 ; py; pz are the components of the axial force along the x0yz axes. Considering a
uniform cross-section and carrying out the algebra, we obtain the linearized equations of motion
in the form

m.eðx; tÞ � EAe00ðx; tÞ ¼ px0 ðx; tÞ; ð21Þ

m.vðx; tÞ þ EIzv
0000ðx; tÞ ¼ pyðx; tÞ; ð22Þ

m .wðx; tÞ þ EIyw0000ðx; tÞ ¼ pzðx; tÞ; ð23Þ

subject to the appropriate boundary conditions. These represent three independent linear
equations that are about a set of non-orthogonal axes. By contrast, had we used u; v; w as
variables, the relationship between u; e; v; and w would be harder to compare. Also, Refs. [2,3]
indicate that especially when a discretized solution is to be used, selecting e; v; w is more desirable,
as a substantial component of uðx; tÞ is the shortening of the projection.

To compare the magnitudes of uðx; tÞ; eðx; tÞ and the shortening of the projection Sðx; tÞ; we
recognize three types of models: (1) the ‘‘exact’’ model, which includes both the elastic stretch and
shortening of the projection; (2) the approximate model, including the elastic stretch but not the
shortening of the projection; and (3) the approximate model, including shortening of the
projection but not the elastic stretch.

The question then becomes which of the two approximate models is more accurate.
Traditionally, and in the absence of a persistent axial force, model (2) has been used more
frequently. To answer our question, one can simulate the equations of motion and compare the
values of u; e; and S: Before we do that, we will first obtain a closed-form approximation to the
response of the linearized system.

4. Non-dimensionalization and response

We begin with non-dimensionalizing the problem. Consider Eqs. (21)–(23) and rewrite them as

m* .e* ðx* ; t* Þ � E * A* e* 00ðx* ; t* Þ ¼ p*
x * ðx* ; t* Þ; ð24Þ

m* .v* ðx* ; t* Þ þ E * I *
z * v* 0000ðx* ; t* Þ ¼ p*

y * ðx* ; t* Þ; ð25Þ

m* .w* ðx* ; t* Þ þ E * I *
y * w* 0000ðx* ; t* Þ ¼ p*

z * ðx* ; t* Þ; ð26Þ

in which the starred quantities are variables with dimensions. The beam is of length L* : We will
use the non-dimensionalization procedure in Ref. [4]. We simplify, without loss of generality, by
neglecting the transverse motion in the z direction. The area moment of inertia about the z-axis
and mass per unit length are written in terms of the cross-sectional area as

I *
z * ¼ A*k*

2

; m* ¼ A*r* ; ð27Þ
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where A* is the cross-sectional area, k* is the radius of gyration and r* is the density. We
introduce the quantities

L ¼
L*

L*
; x ¼

x*

L*
; dx ¼

dx*

L*
; e ¼

e*

L*
; v ¼

v*

L*
ð28Þ

in view of which the partial derivatives have the form

@

@x*
k
¼

1

L*
k

@

@xk
: ð29Þ

We also have

A ¼
A*

L*
2 ; t ¼ t*$ *

1 ; r ¼ r*
L*

6

$ *
2

1

E * I *
; ð30Þ

where $ *
1 is the first natural frequency in bending, to be determined. Introducing all

these substitutions to the equations of motion, we obtain the non-dimensionalized
equations

rA.eðx; tÞ �
e00ðx; tÞ
k2

¼ pxðx; tÞ; ð31Þ

rA.vðx; tÞ þ v0000ðx; tÞ ¼ pyðx; tÞ; ð32Þ

in which k ¼ k*=L* is the non-dimensionalized radius of gyration and the forcing terms on the
right-hand side are obtained by multiplying the starred quantities by L*

3

=E * I * : Hence, we have
reduced the number of non-dimensional parameters that govern the behavior of the axial and
transverse motion to two, rA and k:

Next, consider the external excitation to be used in our comparison. We select a fixed–free bar
and an excitation in the form of an impulsive force #F applied at the tip of the bar. The impulsive
force makes an angle of b with the x-axis. In terms of non-dimensional quantities, one can write
this force as

pyðx; tÞ ¼ #Fdðx � 1ÞdðtÞ sin b; pxðx; tÞ ¼ #Fdðx � 1ÞdðtÞ cos b: ð33Þ

Note that if a force is applied at a free end, the boundary conditions at that end change and the
eigensolution of the fixed–free bar (bending or axial) cannot be used [5,6]. In Appendix A, we
show a way of calculating a closed-form solution for the response due to a force applied at the free
end of a beam. An alternative, which leads to the same result, is to think of the applied force
acting on a point infinitesimally away from the free end ðdðx � 1�ÞÞ and use this expression instead
of ðdðx � 1ÞÞ in the above equation.

We now consider the eigensolution. For both the transverse and axial vibrations there is a
closed-form solution. Using the expansions

vðx; tÞ ¼ V ðxÞei$t; eðx; tÞ ¼ EðxÞeiOt ð34Þ

and defining the quantities a4 ¼ rA$2 and b2 ¼ rAk2O2; we obtain the closed-form solutions to
the corresponding characteristic equations as

a1 ¼ 1:875; a2 ¼ 4:694; a3 ¼ 7:855;y; b1 ¼ p=2; b2 ¼ 3p=2; b3 ¼ 5p=2: ð35Þ
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Combining the above relations, we can obtain a relationship between the ratios of the first
natural frequencies of the transverse and elastic motion as

$1

O1
¼

a2
1

b1
k ¼ 2:238k: ð36Þ

The question then arises as to what a reasonable value for k is. For a circular cross-section
A ¼ pr2; I ¼ pr4=4; so that considering a slenderness ratio of L=r ¼ 10 we obtain k ¼ 1=20: For a
rectangular cross-section of b by b=2; taking a slenderness ratio of b=L ¼ 0:1; we obtain that
kE1=65: Actually, k has its highest value for circular cross-sections. So, if we conservatively take
k ¼ 1=22:38; then from the above equation we obtain

$1

O1
¼

a2
1

b1
k ¼ 2:238k ¼ 0:1: ð37Þ

Next we compare the amplitudes of the modes of vibration. We assume that the first mode
dominates the motion, so that we will use a one mode expansion. Note that an impulsive force at a
point x ¼ P has the effect of an initial velocity on each mode of magnitude frðPÞ #F sin b ðr ¼
1; 2;yÞ; for the transverse motion and crðPÞ #F sin b for the axial deformation. A force applied at a
free end changes the boundary conditions at that end, so one may raise the question of whether
the eigenfunctions of the fixed–free beam can be used to obtain the solution. The general
formulation for such a problem is studied in Refs. [5,6]. We show in Appendix A that the
expression for the displacement and slope at the free end x ¼ 1 due to a force applied at the end
has the same form as when it is calculated for a force in the interior of the beam. The difference in
the solutions is in the internal force and moment. Hence, for the transverse motion, the response
of each mode to an impulsive force at x ¼ 1 is

ZrðtÞ ¼ frð1Þ #F sin b
sinð$ rtÞ

$ r

; r ¼ 1; 2;y; ð38Þ

where frðxÞ is the rth eigenfunction. This eigenfunction is normalized with respect to the mass
using the relation Z 1

0

rAf2
1ðxÞ dx ¼ 1: ð39Þ

It follows that the one mode approximation to the maximum amplitude of the tip of the beam
has the form

vmaxEf1ð1ÞZ1ðtÞmax ¼
f2

1ð1Þ #F sin b
$1

: ð40Þ

In a similar fashion, we obtain the one mode approximation to the maximum value of the axial
deformation

emaxEc1ð1ÞZ1ðtÞmax ¼
c2

1ð1Þ #F cos b
O1

: ð41Þ
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We next compare these maximum amplitudes. For the axial motion, the normalized
eigenfunctions have the closed-form

crðxÞ ¼

ffiffiffiffiffiffiffi
2

rA

s
sin

ð2r � 1Þpx

2

� �
; r ¼ 1; 2;y: ð42Þ

Evaluating the first eigenfunction at x ¼ 1 and introducing it to the above equation we obtain

emax ¼
2 #F cos b
O1rA

: ð43Þ

For the transverse motion, the first eigenfunction can be shown to be

f1ðxÞ ¼ C1fðsinða1xÞ � sinhða1xÞÞ � 1:362ðcosða1xÞ � coshða1xÞÞg ð44Þ

and using the value for a1 from Eq. (35) we obtain

C1 ¼
1

1:362
ffiffiffiffiffiffiffi
rA

p : ð45Þ

Evaluating f1ðxÞ at x ¼ 1 we have f1ð1Þ ¼ 2:725C1; so that

f1ð1Þ ¼
2:725

1:362

1ffiffiffiffiffiffiffi
rA

p E
2ffiffiffiffiffiffiffi
rA

p : ð46Þ

Introduction of this value into Eq. (40) gives

vmax ¼
4 #F sin b
rA$1

: ð47Þ

We are now ready to compare the maximum amplitudes of the transverse and elastic motions at
the tip of the beam. Dividing Eq. (43) with Eq. (47) and using Eq. (36) we obtain

emax

vmax

¼
$1

2O1 tan b
¼ 1:119

k
tan b

: ð48Þ

Table 1 compares the amplitude ratio as a function of varying values for k and b: In the
majority of cases, the amplitude ratio is less than 1=20: This result should be considered in light of
the fact that in the presence of elastic deformation in the z direction the curvature will be even
larger, making emax=vmax smaller than the estimate above. Also, it should be noted that in our
previous estimate of k we used a slenderness ratio of 10, so that for a longer beam, the amplitude
ratio will be smaller.

Next, we calculate the maximum amplitude of the shortening of the projection at the tip of the
beam. We employ the same one mode approximation and using Eq. (38) write the transverse
displacement as

vðx; tÞEf1ðxÞZ1ðtÞ ¼ f1ðxÞf1ð1Þ #F sin b
sinð$1tÞ

$1
ð49Þ
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so that

Sð1; tÞ ¼ �
1

2

Z 1

0

v0
2ðx; tÞ dx ¼ �

1

2

f2
1ð1Þ
$2

1

#F2 sin2 b sin2ð$1tÞ
Z 1

0

f1
02ðxÞ dx: ð50Þ

Introducing the definition of the first eigenfunction from Eq. (44) and the value of C1 from
Eq. (45) we obtain Z 1

0

f1
02ðxÞ dx ¼ 8:625C1 ¼

4:648

rA
: ð51Þ

Recalling that $1 ¼ a2
1=

ffiffiffiffiffiffiffi
rA

p
¼ 1:8752

ffiffiffiffiffiffiffi
rA

p
and f1ð1Þ ¼ 2=

ffiffiffiffiffiffiffi
rA

p
; the maximum value of the

shortening of the projection at the tip of the beam becomes

Smax ¼ �2:324
f2

1ð1Þ
$2

1

#F2 sin2 b ¼ �0:7521
#F2 sin2 b
rA

: ð52Þ

We next calculate the amplitude ratio of the shortening of the projection to the transverse
displacement. Dividing Eq. (52) by Eq. (47) we obtain

Smax

vmax

¼ 0:6610
#Fffiffiffiffiffiffiffi
rA

p sin b: ð53Þ

Hence, the magnitude of the amplitude ratio is governed by the ratio of the applied impulsive
force to the square root of the mass density. To determine a realistic value for the ratio, we go
back to Eq. (47), so that

vmax ¼
4 #F sin b
rA$1

¼
4

1:8752

#F sin bffiffiffiffiffiffiffi
rA

p ¼ 1:138
#F sin bffiffiffiffiffiffiffi
rA

p : ð54Þ

Introducing this expression into the ratio in Eq. (53), we obtain

Smax

vmax

¼
0:6610

1:138
vmax ¼ 0:5808vmax: ð55Þ
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Table 1

Amplitude ratio emax=vmax

b (deg) k

1/20 1/30 1/40 1/50 1/60

10 0.3173 0.2115 0.1587 0.1269 0.1058

20 0.1537 0.1025 0.0769 0.0615 0.0512

30 0.0969 0.0646 0.0485 0.0388 0.0323

40 0.0667 0.0445 0.0333 0.0267 0.0222

50 0.0469 0.0313 0.0235 0.0188 0.0156

60 0.0323 0.0215 0.0162 0.0129 0.0108

70 0.0204 0.0136 0.0102 0.0081 0.0068

80 0.0099 0.0066 0.0049 0.0039 0.0033
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A reasonable value for vmax is 0.05 (we assume the tip of the beam deforms by a ratio of 1=20 of
its length), which gives

Smax

vmax

¼ �0:05* 0:5808 ¼ 0:0290: ð56Þ

We next compare the amplitude ratio of the shortening of the projection and the axial
deformation. Dividing Eq. (55) by Eq. (48) gives

Smax

emax

¼
0:5808

1:119

vmax tan b
k

¼ 0:5255
vmax tan b

k
: ð57Þ

Table 2 compares this ratio for varying values of the radius of gyration k; angle b and vmax ¼
0:05: As can be seen, in the majority of cases the shortening of the projection has a larger
magnitude than the axial deformation. This indicates that when including axial deformation
effects in the mathematical model, one should check the beam parameters and the applied load, so
as to determine whether the shortening of the projection should be included before the axial
elasticity.

5. Multi-mode analysis

The results of the previous section were based on a single mode approximation of the response.
In this section, we consider a multi-mode expansion of both the axial and transverse deformation
and we compare the amplitude ratios as well as responses. In our expansion of the axial
deformation, we use (m modes) twice as many modes as we do for the transverse deformation
(n modes). This is because the eigenvalues of the axial deformation increase in arithmetic
progression and the eigenvalues of the transverse deformation increase in geometric progression,
resulting in more modes participating in the motion for the axial deformation.

Complete derivations for the axial and transverse deformation and the shortening of the
projection are presented in Appendix A. In this section we use the actual quantities for all
variables, not the non-dimensionalized ones.
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Table 2

Amplitude ratio Smax=emax

b (deg) k

1/20 1/30 1/40 1/50 1/60

10 0.0921 0.1382 0.1843 0.2303 0.2764

20 0.1902 0.2853 0.3803 0.4754 0.5705

30 0.3017 0.4525 0.6033 0.7542 0.9050

40 0.4384 0.6576 0.8769 1.0961 1.3153

50 0.6227 0.9340 1.2454 1.5567 1.8681

60 0.9050 1.3575 1.8100 2.2625 2.7150

70 1.4356 2.1533 2.8711 3.5889 4.3067

80 2.9632 4.4449 5.9265 7.4081 8.8897
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The impulsive forces acting at the end of the beam are related by

#Fe ¼ #F cosðbÞ; #Fv ¼ #F sinðbÞ: ð58Þ

The maximum values for the transverse and elastic motion, and the shortening of the projection
appear at the tip of the beam (i.e., x ¼ L). Introducing a new function

fvnðtÞ ¼
Xn

r¼1

%V2
r ðLÞ
b2

r

sin ðortÞp
Xn

r¼1

%V2
r ðLÞ
b2

r

¼ fvn max; n ¼ 1; 2; 3;y; ð59Þ

the maximum amplitude for the transverse vibration as function of number of modes used is

vnðL; tÞ ¼ #F
1

mL

ffiffiffiffiffiffiffiffi
r

Ek2

r
sinðbÞfvnðtÞpvn

max ¼ #F
1

mL

ffiffiffiffiffiffiffiffi
r

Ek2

r
sinðbÞfvn max; n ¼ 1; 2; 3;y: ð60Þ

The magnitude of the impulsive force can be expressed as a function of vn
max as

#F ¼
vn

maxmL

sinðbÞfvn max

ffiffiffiffiffiffiffiffi
Ek2

r

s
; n ¼ 1; 2; 3;y: ð61Þ

Therefore, the maximum amplitude for the shortening of the projection of the tip of the beam, as
a function of number of modes used, is

Sn
max ¼ �

#F2 sin2ðbÞ
2

r
Ek2

1

ðmLÞ2
Xn

r¼1

Xn

s¼1

srs ¼ �
vn2

max

2f 2
vn max

Xn

r¼1

Xn

s¼1

srs; ð62Þ

where

srs ¼
%VrðLÞ
b2

r

%VsðLÞ
b2

s

Z L

0

d %VrðxÞ
dx

d %VsðxÞ
dx

dx: ð63Þ

Using the new expression for the impulsive force, we obtain the maximum amplitude for the
axial stretch em

max as a function of the number of modes used at x ¼ L as

emðL; tÞ ¼
2vn

maxk
tanðbÞ

femðtÞpem
max ¼

vn
max fem max

tanðbÞfvn max

2k; ð64Þ

where

femðtÞ ¼
Xm

r¼1

%U2
r ðLÞ
ar

sinðOrtÞp
Xm

r¼1

%U2
r ðLÞ
ar

¼ fem max; m ¼ 1; 2; 3;y: ð65Þ

Finally, the amplitude ratio of the shortening of the projection and the axial stretch is given as

Sn
max

em
max

¼
vn

max tanðbÞ
4kfvn max fem max

Xn

r¼1

Xn

s¼1

srs: ð66Þ

When we use only one mode for both axial and transverse deformation, then expressions for
em

max; vn
max; and Sn

max are exactly the same as ones derived in the previous section, which proves the
validity of that analysis. Here, we examine the ratio Sn

max=em
max when axial and transverse

deformations were calculated with more then one mode. Figs. 5–8 show the ratio Sn
max=em

max versus
vn

max for varying values of the radius of gyration. As can be expected, the results follow the trend
of Table 2. The different lines on the plots correspond to values of the angle b in the range 10–70�;
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Fig. 5. Smax=emax vs. vmax for k ¼ 0:04 and 2–4 modes in expansion.
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Fig. 6. Smax=emax vs. vmax for k ¼ 0:04 and 4–8 modes in expansion.
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Fig. 8. Smax=emax vs. vmax for k ¼ 0:02 and 4–8 modes in expansion.
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Fig. 7. Smax=emax vs. vmax for k ¼ 0:02 and 2–4 modes in expansion.
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Fig. 9. Comparison of response for b ¼ 45�; F; vðL; tÞ; - - eðL; tÞ; 	 - 	; SðL; tÞ:
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Fig. 10. Comparison of response for b ¼ 45�; F; vðL; tÞ; - - eðL; tÞ; 	 - 	; SðL; tÞ:
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Fig. 11. Comparison of response for b ¼ 45�; F; vðL; tÞ; - - eðL; tÞ; 	 - 	; SðL; tÞ:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 -0.05

 -0.04

 -0.03

 -0.02

 -0.01

0

0.01

0.02

0.03

0.04

0.05

nondimentional time

V
(t

),
 e

(t
),

 S
(t

)

Fig. 12. Comparison of response for b ¼ 45�; F; vðL; tÞ; - - eðL; tÞ; 	 - 	; SðL; tÞ:
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with increments of 10�: We observe that the ratio Sn
max=em

max grows slightly larger than the one
mode estimate. Hence, the single mode approximation and Eq. (57) can be used as a guideline to
determine whether the beam one considers needs to be modelled together with shortening or axial
elasticity. When the results of the one mode analysis are inconclusive the multi-mode analysis may
be required.

Next, we consider the simulation of the system response. We use the same conditions as in the
previous section (no initial deformation or velocity, an impulsive force, with a variety of number
modes for transverse ðnÞ and the axial ðmÞ deformation). The simulation results are shown in
Figs. 9–12 for the tip of the beam for the cases of k ¼ 0:02 and k ¼ 0:04: The impulsive force #F is
selected using Eq. (61) so that the maximum amplitude of the transverse deformation is vn

max ¼
0:05 m and L ¼ 1 m:

We observe that the motion amplitudes are within the range predicted in the previous analysis,
with the shortening of the projection assuming somewhat larger values. Hence, the guideline
developed in Eq. (57) from a single mode analysis is a reliable measure to use in a multi-mode
analysis. Furthermore, we see a slower time dependence of the shortening of the projection, thus
justifying the assumptions made earlier that the shortening is a slowly varying term and that in
most cases it can be treated as a quasi-static expression [3].

6. Response of non-linear model

In previous sections of this paper, we analyzed the response amplitudes of the axial and
transverse motion. For the choice of the motion variables, the potential energy is quadratic and
the kinetic energy contains terms higher than quadratic. The closed-form analysis and response of
the previous sections was based on eliminating the higher order terms from the kinetic energy. The
resulting equations of motion then became linear.

The question arises as to the effects of these non-linear terms. Let us examine the non-linear
equations of motion when the higher order terms are included. Using the assumed modes method,
we introduce the expansion of the response for the axial and transverse motions into the kinetic
energy and invoke Langrange’s equations, which result in a set of non-linear equations.

Encouraged by the results of the previous sections, where a single mode analysis accurately
predicts the overall response, we will again consider a one mode expansion of the axial and
transverse motions. We further simplify the problem by considering transverse deformation in the
y direction only, setting wðx; tÞ ¼ 0: In addition, we simplify sinðyzÞEv0ðx; tÞ: Using the starred
notation, which indicates that the quantities we are using have dimensions, the kinetic and
potential energies have the form

2T * ¼
Z L *

0

m* ð’e*2ðx* ; t* Þ þ ’v*2ðx* ; t* Þ þ 2’e* ðx* ; t* Þ’v* ðx* ; t* Þv0 * ðx* ; t* ÞÞ dx* ; ð67Þ

2V * ðtÞ ¼
Z L

0

ðE * A* ðx* Þ½e0 * ðx* ; t* Þ�2 þ E * I *
z * z * ðx* Þ½v00* ðx* ; t* Þ�2Þ dx* : ð68Þ

Before invoking the assumed modes, it is helpful to non-dimensionalize the energy terms.
Recalling that

R L *

0 dx* ¼ L*
R 1

0 dx and dividing the kinetic and potential energies by E * L*3 we
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obtain

2T ¼ Ar
Z 1

0

ð’e2ðx; tÞ þ ’v2ðx; tÞ þ 2’eðx; tÞ’vðx; tÞv0ðx; tÞÞ dx; ð69Þ

2V ¼
Z 1

0

e0ðx; tÞ2

k2
þ ðv00ðx; tÞ2Þ

� �
dx: ð70Þ

We write the elastic motion using a one term expansion as

eðx; tÞ ¼ cðxÞZðtÞ; vðx; tÞ ¼ fðxÞzðtÞ; ð71Þ

where cðxÞ and fðxÞ are given in Eqs. (42) and (44), respectively. Note that these eigenfunctions
are normalized with respect to the mass distribution rA: Hence, we obtain for the kinetic and
potential energies

2T ¼ ’Z2ðtÞ þ ’z2ðtÞ þ M ’ZðtÞ’zðtÞzðtÞ; 2V ¼ O2
1Z

2ðtÞ þ $2
1z2ðtÞ; ð72Þ

where from Eq. (35), $2
1 ¼ a4

1=rA (transverse motion) and O2
1 ¼ b2

1=rA (axial motion), we have

M ¼
Z 1

0

rAcðxÞfðxÞf0ðxÞ dx: ð73Þ

Considering the form of the virtual work in Eq. (33), and invoking Lagrange’s equations, we
obtain the equations of motion as

.ZðtÞ þ MzðtÞ.zðtÞ þ M ’z2ðtÞ þ O2
1ZðtÞ ¼ NðtÞ; ð74Þ

.zðtÞ þ MzðtÞ.ZðtÞ þ o2
1zðtÞ ¼ ZðtÞ; ð75Þ
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with N and Z denoting the generalized forces. We basically integrate these two equations of
motion to obtain the response.

A numerical evaluation of M ; for the parameters of rA ¼ 1; k ¼ 1=30 yields M ¼ 0:7228: With
this information, zero initial conditions and an impulsive force applied at angle of 45� to the beam
axis (same conditions as considered in previous examples) we integrate the equations of motion.

Plots of ZðtÞ (axial co-ordinate) and zðtÞ (transverse co-ordinate) are shown in Figs. 13 and 14
for the non-linear model, as well as the linearized model. As can be seen, the primary effect of the
non-linearity is a small change in the period of the motion, with no noticeable change in the
vibration amplitudes. This is the type of plot one observes when studying a pendulum that
undergoes large motions. The coupling between the axial and transverse motions also appears to
have negligible effect. It should be noted that similar results were obtained for different values of
rA and k: Hence, we conclude that non-linearities in the equations of motion have no discernible
effect on vibration amplitudes and that our earlier results, which are based on the linearized
model, are valid for the general system.

7. Conclusions

We compared for slender beams the amplitude ratios of the axial elastic deformation versus the
shortening of the projection. We developed closed-form solutions for axial and transverse
deformations for a fixed–free beam with an impulsive force at its free end. The results indicate that
the shortening of the projection and elastic stretch have comparable magnitudes with the
shortening of the projection being slightly larger in a majority of cases. When modelling a specific
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beam, it is recommended that one first analyze the relative magnitudes of the shortening and axial
elasticity using the amplitude ratios developed above as guidelines.

Appendix A. Closed-form solution for axial and transverse vibrations

In this appendix, we develop a closed-form solution for the response of a beam ( in bending or
axial vibration) with a free end. We consider that a force Fe is applied at the free end. Since there is
a force at the free end, the free-end boundary conditions no longer apply. First, we consider the
axial vibration, given by Eq. (21).

We can model the beam and the excitation applied to it in two ways: In the first way, we write
the external excitation as

pxðx; tÞ ¼ FeðtÞdðx � L�Þ; ðA:1Þ

with the mathematical manipulation that the force is not really at the free end, but at an
infinitesimal distance behind it. This makes it possible to use the standard model expansion, as
outlined previously in the text.

The second and more mathematically sound way of dealing with the force in the free end is
outlined in Refs. [5,6]. Here, we consider that procedure, as well as suggest an improvement. The
boundary conditions are no longer homogeneous:

eð0; tÞ ¼ 0; EA
@eðx; tÞ
@x

����
x¼L

¼ FeðL; tÞ: ðA:2Þ

For simplicity, we assume zero initial conditions. We will consider a solution in the form

eðx; tÞ ¼ e1ðx; tÞ þ hðxÞFeðL; tÞ: ðA:3Þ

The function hðxÞ can be chosen in many different ways; here we select hðxÞ in the following
form, so that e1ðx; tÞ is the solution for fixed–free vibrating beam without any load at its
free end:

hðxÞ ¼ ða þ bxÞ %uðx � LÞ;
dhðxÞ
dx

¼ a %uðx � LÞ þ ða þ bxÞdðx � LÞ; ðA:4Þ

and boundary conditions

hðxÞjx¼0 ¼ 0;
dhðxÞ
dx

����
x¼0

¼ 0; hðxÞjx¼L ¼ 0; EA
dhðxÞ
dx

����
x¼L

¼ 1; ðA:5Þ

where %u is the step function and d is the impulse function. The coefficients a and b are determined
by using the initial conditions. This leads to

hðxÞ ¼ �
L

EA
þ

1

EA
x

� �
%uðx � LÞ: ðA:6Þ

Introducing Eq. (A.3) into the equation of motion we obtain

�EA
@2e1ðx; tÞ

@x2
þ mðxÞ

@2e1ðx; tÞ
@t2

¼ EA
d2h

dx2
Feðx; tÞ � mðxÞhðxÞ .Feðx; tÞ ðA:7Þ
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with homogeneous boundary conditions

e1ðx; tÞjx¼0 ¼ 0; EA
@e1ðx; tÞ

@x

����
x¼L

¼ 0: ðA:8Þ

We assume a solution in the form e1 ¼ UðxÞTðtÞ: After substituting this expression in the equation
of motion we have

UrðxÞ ¼

ffiffiffiffiffiffi
2

mL

s
sinðarxÞ ¼

ffiffiffiffiffiffi
2

mL

s
%UrðxÞ; ðA:9Þ

where

ar ¼ ð2r � 1Þ
p
2L

; Or ¼ ar

ffiffiffiffiffiffiffi
EA

m

s
; %UrðxÞ ¼ sinðarxÞ; r ¼ 1; 2;y: ðA:10Þ

The modal equations become

.ZrðtÞ þ O2
rZrðtÞ ¼ �fN *

r FeðL; tÞ þ Nr
.FeðL; tÞg; r ¼ 1; 2;y ðA:11Þ

in which ZrðtÞ are the modal co-ordinates and

N *
r ¼

Z L

0

UrðxÞ �EA
d2h

dx2

� �
dx ¼ �UrðLÞ; r ¼ 1; 2;y; ðA:12Þ

Nr ¼
Z L

0

mUrðxÞhðxÞ dx ¼ 0; r ¼ 1; 2;y: ðA:13Þ

For zero initial conditions the solution is

ZrðtÞ ¼
1

or

Z t

0

UrðLÞFeðL; t� tÞ sinðOrtÞ dt; r ¼ 1; 2;y: ðA:14Þ

Up to this point we did not use the fact that the force is an impulsive force, so that the modal
equations (A.14) are valid for any force acting at the free end. When the force at the end of the
beam is an impulsive force, FeðL; tÞ ¼ #FedðtÞ; the modal equations become

ZrðtÞ ¼
1

Or

UrðLÞ #Fe sinðOrtÞ ¼
1

Or

ffiffiffiffiffiffi
2

mL

s
%UrðxÞ #Fe sinðOrtÞ; r ¼ 1; 2;y ðA:15Þ

and the complete solution for the axial stretch is

eðx; tÞ ¼
XN
r¼1

UrðxÞZrðtÞ þ �
L

EA
þ

1

EA
x

� �
%uðx � LÞ #FedðtÞ: ðA:16Þ

This procedure can easily be extended to the transverse vibration of beams. The solution is in the
form

vðx; tÞ ¼ v1ðx; tÞ þ hvðxÞFvðx; tÞ: ðA:17Þ

where one can show that

hvðxÞ ¼ �
L3

6EI
þ

L2

2EI
x �

L

2EI
x2 þ

1

6EI
x3

� �
%uðx � LÞ; ðA:18Þ
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hvðxÞjx¼0 ¼ 0;
dhvðxÞ
dx

����
x¼0

¼ 0;
d2hvðxÞ
dx2

����
x¼0

¼ 0;
d3hvðxÞ
dx3

����
x¼0

¼ 0;

hvðxÞjx¼L ¼ 0;
dhvðxÞ
dx

����
x¼L

¼ 0;
d2hvðxÞ
dx2

����
x¼L

¼ 0; EI
d3hvðxÞ
dx3

����
x¼L

¼ 1; ðA:19Þ

and v1ðx; tÞ is the solution for

EI
@4v1ðx; tÞ

@x4
þ mðxÞ

@2v1ðx; tÞ
@t2

¼ � EI
d4hv

dx4
FvðL; tÞ þ mðxÞhvðxÞ .FvðL; tÞ

� �
; ðA:20Þ

with zero initial conditions and the boundary conditions

v1ð0; tÞ ¼ 0;
@v1ðx; tÞ

@x

����
x¼0

¼ 0;
@2v1ðx; tÞ

@x2

����
x¼L

¼ 0; EI
@3v1ðx; tÞ

@x3

����
x¼L

¼ 0: ðA:21Þ

The solution can then be expressed as v1ðx; tÞ ¼
P

N

r¼1 VrðxÞZrðtÞ:

VrðxÞ ¼

ffiffiffiffiffiffi
1

mL

s
1ffiffiffiffi
Ir

p fcoshðbrxÞ � cosðbrxÞ � srðsinhðbrxÞ � sinðbrxÞÞg; r ¼ 1; 2;y; ðA:22Þ

b1L ¼ 1:875; b2L ¼ 4:694; b3L ¼ 7:855; b4L ¼ 10:996; ðA:23Þ

sr ¼
cosðbrxÞ þ coshðbrxÞ
sinðbrxÞ þ sinhðbrxÞ

; o2
r ¼ b4

r

EI

m
; r ¼ 1; 2;y;

Ir ¼
1

L

Z L

0

fcoshðbrxÞ � cosðbrxÞ � srðsinhðbrxÞ � sinðbrxÞÞg
2 dx; ðA:24Þ

ZrðtÞ ¼
1

or

Z t

0

VrðLÞFvðL; t� tÞ sinðortÞ dt; r ¼ 1; 2;y: ðA:25Þ

When the force at the end of the beam is an impulsive force FvðL; tÞ ¼ #FvdðtÞ; the solution is

ZrðtÞ ¼
1

or

VrðLÞ #Fv sinðortÞ ¼
1

or

ffiffiffiffiffiffi
1

mL

s
%VrðxÞ #Fv sinðortÞ; r ¼ 1; 2;y; ðA:26Þ

and the complete solution for transverse vibration becomes

vðx; tÞ ¼
XN
r¼1

VrðxÞZrðtÞ þ �
L3

6EI
þ

L2

2EI
x �

L

2EI
x2 þ

1

6EI
x3

� �
%uðx � LÞ #FvdðtÞ: ðA:27Þ

Using the above expression the shortening of the projection at the tip of the beam is

SðL; tÞ ¼ �
1

2

1

ðmLÞ2

Z L

0

XN
r¼1

d %VrðxÞ
dx

1

or

%VrðLÞ #Fv sinðortÞ

 !

�
XN
s¼1

d %VsðxÞ
dx

1

os

%VsðLÞ #Fs sin ðostÞ

 !
dx; ðA:28Þ

where we used the fact that hðxÞ ¼ 0; dhðxÞ=dx ¼ 0 for 0pxpL:
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The difference between the response obtained here ðvðx; tÞÞ and the response obtained using a
straightforward expansion (which is the same as v1ðx; tÞÞ is in the third and fourth derivatives,
namely in the shear and moment expressions. While the free end approach gives the erroneous
result of zero shear force, the developments in Refs. [5,6] and the solution above shows that shear
force is not zero at that point.
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